MgBr $_2$ -promoted electrosynthesis of sulfenimines (thiooximes) from α -AMINO-ALKANOATES AND DIARYL/DIALKYL DISULFIDES IN A ${\rm CH}_2{\rm Cl}_2$ -H $_2{\rm O}$ TWO-PHASE SYSTEM. 1)

A STRAIGHTFORWARD PREPARATION OF C(6)/C(7)-SULFENIMINE DERIVATIVES

OF PENICILLIN AND CEPHALOSPORIN

Sigeru TORII,* Hideo TANAKA, Sin-ichi HAMANO, Nobuhito TADA, †

Junzo NOKAMI, † and Michio SASAOKA

Department of Industrial Chemistry, School of Engineering,
Okayama University, Okayama 700

†Okayama University of Science, Ridai, Okayama 700

Direct transformation of α -aminoalkanoates and diaryl or dialkyl disulfides to the corresponding sulfenimines by electrolysis in a $\text{CH}_2\text{Cl}_2\text{-H}_2\text{O-MgBr}_2\text{-(Pt electrodes)}$ system and its application to the sulfenylation of C(6)/C(7)-amino groups of penicillin and cephalosporin are described.

Sulfenimine (Thiooxime) is a valuable synthetic intermediate as a secondary imine equivalent. Sulfenimines have been prepared by condensation of primary sulfenamides (RSNH₂) with ketones or aldehydes, sulfenylation of amines with excess sulfenyl chlorides (3 equiv.), box oxidation of sulfenamides with MnO₂ or sulfenyl chlorides, and others. However, direct transformation of readily available disulfides and amines into sulfenimines has not yet been realized.

In the course of our investigation on the halide-promoted electrosynthesis of hetero-hetero atom bonds, 1) we found that electrolytic cross-coupling of α -aminoalkanoates $\underline{1}$ and disulfides $\underline{2}$ into sulfenimines $\underline{3}$ took place smoothly in a $\mathrm{CH_2Cl_2-H_2O-MgBr_2-}$ (Pt electrodes) system, which involves both anodic and cathodic reactions, so-called "paired reaction". Such electrolytic paired reaction could be successfully applied to the sulfenylation of $\mathrm{C}(6)$ -aminopenicillin $\underline{9p}$ and $\mathrm{C}(7)$ -aminocephalosporin $\underline{9c}$ into the corresponding $\mathrm{C}(6)/\mathrm{C}(7)$ -sulfenamide and/or $\mathrm{C}(6)/\mathrm{C}(7)$ -sulfenimine derivatives $\underline{10}$ and $\underline{11}$, respectively.

The electrolysis was carried out in a beaker-type undivided cell, fitted with two Pt electrodes (1.5 \times 2 cm²). A typical electrolysis procedure (entry 1 in Table 1) is as follows. An aqueous MgBr₂ solution (0.3 mmol/4 ml) and a

CH₂Cl₂ solution (3 ml) of α -aminoalkanoate \underline{la} (R¹ = \underline{i} -Bu; R² = Et, 0.6 mmol) and disulfide $\underline{2a}$ (R³ = Ph, 0.6 mmol) were charged into the cell. Under vigorous stirring at room temperature, regulated dc-power (10 mA/cm²) was supplied until most starting material \underline{la} was consumed (2.5 F/mol of electricity passed). After usual workup and short-path column chromatography (SiO₂, hexane/AcOEt:10/1) sulfenimine $\underline{3a}$ (R¹ = \underline{i} -Bu; R² = Et; R³ = Ph) was obtained in 83% yield. The results of the electro-coupling of α -aminoalkanoates \underline{l} with diaryl and dialkyl disulfides 2 are summarized in Table 1.

The two-phase electrolysis system comprising aqueous and organic (CH $_2$ Cl $_2$) phases was effective for the successful transformation of $\underline{1}$ and $\underline{2}$ into $\underline{3}$. In contrast, a combination of water and hydrophylic organic solvent, e.g., H $_2$ O-THF, H $_2$ O-dioxane, and H $_2$ O-CH $_3$ CN, brought about crucial formation of a complex mixture of decomposition products involving α -keto esters $\underline{4}$ (15-20%).

Notably, the presence of MgBr_2 in the electrolysis media is indispensable. The yield of desired 3a strikingly depends on the choice of halide ion: MgBr_2 (93%); MgI_2 (57%); MgCl_2 (27%). The effects of the counter ion of Br^- are also remarkable: $\mathrm{NH}_4\mathrm{Br}$ (41%); NaBr (25%); LiBr (24%). These facts suggest that both Mg^{2+} and Br^- play significant roles in the S-N coupling of 1 and 1 into 10. Although the mechanism is still uncertain, the transformation of 11 and 12 into 13 can be explained by assuming the following set of paired reaction (Eqs. 1-7).

As shown in Eq. 3, it is likely that the electro-generated Br $_2$ (Eq. 1) favorably attacks amine $\underline{1}$ (\Rightarrow $\underline{5}$) rather than disulfide $\underline{2}$ (\Rightarrow $\underline{7}$). In fact, electrolysis of $\underline{1a}$ in the aqueous MgBr $_2$ -CH $_2$ Cl $_2$ two-phase system (3 F/mol) afforded the corresponding α -keto ester $\underline{4}$ (68%), presumably via $\underline{5}$, whereas disulfides $\underline{2}$ were recovered (75-90%) under the same electrolysis conditions. Subsequently, the N-bromoamine $\underline{5}$ would react with the disulfide $\underline{2}$ to give sulfenamide $\underline{6}$ and sulfenyl bromide $\underline{7}$ (Eq. 4), latter of which would, in turn, react with the additional amine

Aqueous Phase

Anode:
$$2 \text{ Br}^ \xrightarrow{-2e^-}$$
 Br_2 (1)

Cathode: Mg^{2+} + 2 H_2O $\xrightarrow{+2e^-}$ $\text{Mg}(\text{OH})_2$ + H_2 (2)

Organic Phase

 $\frac{1}{2}$ + Br_2 + $\text{OH}^ \xrightarrow{-2e^-}$ $\text{Mg}(\text{OH})_2$ + H_2 (2)

NHBr

 $\text{R}^1 \xrightarrow{-2\text{COOR}^2}$ + Br^- + H_2O (3)

 $\frac{5}{2}$ $\text{NH} = \text{SR}^3$ (4)

 $\frac{1}{2}$ + $\frac{7}{2}$ + $\text{OH}^ \xrightarrow{-2e^-}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{7}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{$

							a)
Table	1.	Direct	Electrosynthesis	οf	Sulfenimine	from	α-Aminoalkanoate ^{a)}

Entry	α-Aminoalka R ^l	noate <u>1</u> R ²	Disulfide <u>2</u> R ³	Electricity ^{b)} F/mol	Product 3 Yield / % b,c)
1	СН (СН ₃) ₂	С ₂ н ₅	Ph	2.5	83
2	СН (СН ₃) 2		Bu ^t	3	60
3	СН (СН ₃) ₂	С ₂ н ₅	BT ^{d)}	2.5	55
4	Ph	CH ₃	Ph	3	92
5	Ph	С ₂ ^Н 5	Ph	3	93
6	Ph	с ₂ н ₅	P-NO2C6H4	3	88
7	Ph	^С 2 ^Н 5	Bu	3	75
8	Ph	^С 2 ^Н 5	Bu ^t	3	69
9	(СН ₂) ₂ СООС ₂ Н ₅	С ₂ н ₅	Ph	3.2	80
10	CH ₂ COOC ₂ H ₅	С ₂ ^Н 5	Ph	3.5	79

a) Carried out in a ${\rm MgBr}_2-{\rm H}_2{\rm O-CH}_2{\rm Cl}_2$ -(Pt electrodes) system at 10 mA/cm² at room temperature. b) Based on α -aminoalkanoate $\underline{\bf 1}$. c) Isolated yields after column chromatography (SiO₂, hexane/AcOEt: 10/1). d) 2-Benzothiazoly1.

Table 2. Electrolytic Conversion of Sulfenamide into Sulfenimine a)

Entry	Sulfenamide $\underline{6}^{b}$		Electricity	Product 3
	R ¹	R ³	F/mol	Yield / % ^{c)}
1	СН (СН ₃) 2	Ph	2.2	83
2	CH (CH ₃) ₂	BT ^{d)}	2.5	70
3	Ph	Ph	2.5	96
4	(CH ₂) ₂ COOC ₂ H ₅	Ph	2	81
5	CH ₂ COOC ₂ H ₅	Ph	2	83

a) Unless otherwise noted, the electrolysis was carried out in a same manner as described above. b) $R^2 = C_2H_5$. c) Isolated yields after column chromatography (SiO₂, hexane/AcOEt: 10/1). d) 2-Benzothiazolyl.

 $\underline{1}$, yielding $\underline{6}$ (Eq. 5). The intermediary sulfenamide $\underline{6}$ would be submitted to further oxidation, affording $\underline{3}$ (Eqs. 6 and 7). The transformation of $\underline{6}$ to $\underline{3}$ could be actually confirmed by the electrolysis of $\underline{6}$ in the same electrolysis media (see Table 2). In the course of the reaction, electro-generated base, Mg(OH)₂, (Eq. 2) would promote the proton-abstraction steps (Eqs. 3, 5, 6, and 7).

Next, we examined sulfenylation 2b,c) of C(6)/C(7)-amino groups of penicillin 9p and cephalosporin 9c in a slightly modified electrolysis system. Thus, electrolysis of 9p and disulfide 2 (R³ = Ph) in a CH2Cl2-MeOH-H2O (10/2.5/10)-MgBr2-(Pt) system (4 F/mol) afforded 72% yield of sulfenimine 11p (R³ = Ph). In a similar manner, sulfenimines 11p (R³ = BT, 72%, 8 F/mol) and 11c (R³ = Ph, 60%, 6 F/mol) were obtained. Interestingly, the intermediary sulfenamide 10p (R³ = BT) was isolated in 87% yield by interrupting the electrolysis after passage of 3 F/mol of electricity. Conversion of 10p to 11p could be performed under similar electrolysis conditions in 71% yield.

Details on the electro-sulfenylation of $\underline{9}$ as well as further transformation of 11 into useful β -lactam compounds⁵⁾ will be reported in due course.

$$9-11p : y =$$
 COOCH₂Ph $9-11c : y =$ COOCH₂Ph

References

- 1) Electrosynthesis of Hetero-Hetero Atom Bonds VI. For Part V: S. Torii, N. Sayo, and H. Tanaka, Tetrahedron Lett., <u>1979</u>, 4471.
- a) B. P. Branchaud, J. Org. Chem., <u>48</u>, 3531, 3538 (1981); b) E. M. Gordon, H. W. Chang, C. M. Cimarusti, B. Toeplitz, and J. Z. Gougoutas, J. Am. Chem. Soc., <u>102</u>, 1690 (1980); c) T. Kobayashi and T. Hiraoka, Chem. Pharm. Bull., <u>27</u>, 2718 (1979), and references cited therein.
- 3) J. J. D'Amic, J. Org. Chem., 26, 3436 (1961); see also Ref. 2a.
- 4) R. D. Grant, C. J. Moaly, C. W. Rees, and S. C. Tsoi, J. Chem. Soc., Chem. Commun., 1982, 884; F. A. Davis and P. Mancinelli, J. Org. Chem., 45, 2597 (1980); F. A. Davis, W. A. R. Slegeir, S. Evans, A. Schwarts, D. L. Goff, and R. Palmer, ibid., 38, 2809 (1973); F. A. Davis, Int. J. Sulfur Chem., 8, 71 (1973), and references cited therein.
- 5) Sulfenimines $\underline{11}$ are potential precursors of C(6)- α -methoxypenicillins and C(7)- α -methoxycephalosporins: T. Hiraoka, Y. Sugimura, T. Saito, and T. Kobayashi, Heterocycles, 8, 719 (1977), and see also Refs. 2b and 2c.

(Received July 26, 1984)